Extensions 1→N→G→Q→1 with N=C23 and Q=D18

Direct product G=N×Q with N=C23 and Q=D18
dρLabelID
C24×D9144C2^4xD9288,839

Semidirect products G=N:Q with N=C23 and Q=D18
extensionφ:Q→Aut NdρLabelID
C23⋊D18 = C22×C3.S4φ: D18/C6S3 ⊆ Aut C2336C2^3:D18288,835
C232D18 = C232D18φ: D18/C9C22 ⊆ Aut C2372C2^3:2D18288,147
C233D18 = D46D18φ: D18/C9C22 ⊆ Aut C23724C2^3:3D18288,358
C234D18 = C2×D4×D9φ: D18/D9C2 ⊆ Aut C2372C2^3:4D18288,356
C235D18 = C22×C9⋊D4φ: D18/C18C2 ⊆ Aut C23144C2^3:5D18288,366

Non-split extensions G=N.Q with N=C23 and Q=D18
extensionφ:Q→Aut NdρLabelID
C23.1D18 = C12.1S4φ: D18/C6S3 ⊆ Aut C23726-C2^3.1D18288,332
C23.2D18 = C4×C3.S4φ: D18/C6S3 ⊆ Aut C23366C2^3.2D18288,333
C23.3D18 = C22⋊D36φ: D18/C6S3 ⊆ Aut C23366+C2^3.3D18288,334
C23.4D18 = C2×C6.S4φ: D18/C6S3 ⊆ Aut C2372C2^3.4D18288,341
C23.5D18 = C23.D18φ: D18/C6S3 ⊆ Aut C23366C2^3.5D18288,342
C23.6D18 = C22.D36φ: D18/C9C22 ⊆ Aut C23724C2^3.6D18288,13
C23.7D18 = C232Dic9φ: D18/C9C22 ⊆ Aut C23724C2^3.7D18288,41
C23.8D18 = C23.8D18φ: D18/C9C22 ⊆ Aut C23144C2^3.8D18288,89
C23.9D18 = C23.9D18φ: D18/C9C22 ⊆ Aut C23144C2^3.9D18288,93
C23.10D18 = D18⋊D4φ: D18/C9C22 ⊆ Aut C23144C2^3.10D18288,94
C23.11D18 = Dic9.D4φ: D18/C9C22 ⊆ Aut C23144C2^3.11D18288,95
C23.12D18 = C36.17D4φ: D18/C9C22 ⊆ Aut C23144C2^3.12D18288,146
C23.13D18 = C362D4φ: D18/C9C22 ⊆ Aut C23144C2^3.13D18288,148
C23.14D18 = Dic9⋊D4φ: D18/C9C22 ⊆ Aut C23144C2^3.14D18288,149
C23.15D18 = C36⋊D4φ: D18/C9C22 ⊆ Aut C23144C2^3.15D18288,150
C23.16D18 = C23.16D18φ: D18/D9C2 ⊆ Aut C23144C2^3.16D18288,87
C23.17D18 = C222Dic18φ: D18/D9C2 ⊆ Aut C23144C2^3.17D18288,88
C23.18D18 = C22⋊C4×D9φ: D18/D9C2 ⊆ Aut C2372C2^3.18D18288,90
C23.19D18 = Dic94D4φ: D18/D9C2 ⊆ Aut C23144C2^3.19D18288,91
C23.20D18 = C223D36φ: D18/D9C2 ⊆ Aut C2372C2^3.20D18288,92
C23.21D18 = C22.4D36φ: D18/D9C2 ⊆ Aut C23144C2^3.21D18288,96
C23.22D18 = D4×Dic9φ: D18/D9C2 ⊆ Aut C23144C2^3.22D18288,144
C23.23D18 = C23.23D18φ: D18/D9C2 ⊆ Aut C23144C2^3.23D18288,145
C23.24D18 = C2×D42D9φ: D18/D9C2 ⊆ Aut C23144C2^3.24D18288,357
C23.25D18 = C36.49D4φ: D18/C18C2 ⊆ Aut C23144C2^3.25D18288,134
C23.26D18 = C23.26D18φ: D18/C18C2 ⊆ Aut C23144C2^3.26D18288,136
C23.27D18 = C4×C9⋊D4φ: D18/C18C2 ⊆ Aut C23144C2^3.27D18288,138
C23.28D18 = C23.28D18φ: D18/C18C2 ⊆ Aut C23144C2^3.28D18288,139
C23.29D18 = C367D4φ: D18/C18C2 ⊆ Aut C23144C2^3.29D18288,140
C23.30D18 = C2×C18.D4φ: D18/C18C2 ⊆ Aut C23144C2^3.30D18288,162
C23.31D18 = C244D9φ: D18/C18C2 ⊆ Aut C2372C2^3.31D18288,163
C23.32D18 = C2×D365C2φ: D18/C18C2 ⊆ Aut C23144C2^3.32D18288,355
C23.33D18 = C18.C42central extension (φ=1)288C2^3.33D18288,38
C23.34D18 = C2×C4×Dic9central extension (φ=1)288C2^3.34D18288,132
C23.35D18 = C2×Dic9⋊C4central extension (φ=1)288C2^3.35D18288,133
C23.36D18 = C2×C4⋊Dic9central extension (φ=1)288C2^3.36D18288,135
C23.37D18 = C2×D18⋊C4central extension (φ=1)144C2^3.37D18288,137
C23.38D18 = C22×Dic18central extension (φ=1)288C2^3.38D18288,352
C23.39D18 = C22×C4×D9central extension (φ=1)144C2^3.39D18288,353
C23.40D18 = C22×D36central extension (φ=1)144C2^3.40D18288,354
C23.41D18 = C23×Dic9central extension (φ=1)288C2^3.41D18288,365

׿
×
𝔽